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A description is given of a semiempirical method of determining the flow density of nonequilibrium
adiabatic flows of evaporating liquids based on the vortex theory of vapor-phase generation, which
establishes a relation between the superheating of the liguid and its flow velocity. It is shown that, at
suberitical flow rates, evaporation in an adiabatic liquid flow becomes impossible, and a method of
determining the critical flow parameters is given.

When a thermally insulated liquid flows info a space where the pressure is lower than the saturation pressure at
the initial temperature of the liquid, separation of a vapor phase may take place in the flow. This effect has been
called adiabatic vaporization. In the literature, for example, in [1], an isentropic thermodynamic-equilibrium flow of
homogeneous vapor-liquid mixture is assumed, However, this assumption is justified only when the initial vapor
content xjy, is sufficiently large, which is possible, for example, in the presence of preliminary throttling. If,
however, the initial vapor content does not exceed 2%, the flow will be essentially nonequilibrium and assuming an
isentropic thermodynamic-equilibrium homogeneous flow leads to a deviation of up to 450% from the experimental
values of the two-phase flow density [2].

There is as yet no general theory of nonequilibrium adiabatic flows of evaporating liquids. In this paper, we
attempt to find an approach to the general solution of the problem.

Experimental investigations of adiabatic vaporization show that the appearance of a vapor phase is accompanied
by superheating of the liquid and takes place at pressures in the flow considerably exceeding the pressure at which the
liquid loses stability when at rest, i.e.- the superheatingattainable inaflowis muchlessthan inthe quiescent liquid.

We determine the superheating of the flowing liquid, assuming that the vapor phase is generated in the eddies
produced by turbulence, We note that in all known cases of adiabatic vaporization the Reynolds numbers of the flow
are several orders greater than the Reynolds numbers at which the transition from turbulent to laminar flow takes
place, and such flows are rotational.

There has been a series of studies relélting to the investigation of the vortex structure of turbulent flows. The
most interesting from our viewpoint is [3], in which it was experimentally confirmed that turbulence is the initiator of
vaporization.

We examine a simplified plane-vortex model, assuming that at the moment of vortex formation the radial
velocity distribution satisfies the condition of constant circulation. At the center of such a vortex there must be a zone
of reduced pressure, where, in our model, the pressure at which the liquid state loses stability is attained and a vapor
phase is generated. At the moment of generation of the vapor phase the vortex consists of an annular layer of liquid
and a vapor core rotating about a common center.

We write the differential equation of motion for the liquid layer

1 4 &

o dr r

where p' is the density of the liquid, constant along the radius r; and u is the circulation velocity.

Determining u from the condition of constant circulation I' = ur, we have
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Integration of Eq. (1) over the radius gives
‘r* /1 1
o= (——w——«) @)

In (2) the pressures p; and p; are determined within the liquid ring enclosed between two surfaces layers of liquid of
radii r; and r,. The pressure at the vapor-liquid interface, taking the surface tension o into account, is

20
Ppy=Ph——, (3)
41

and the pressure at the edge of the liquid vortex on the mainstream side

20
pV2:p2+—' (4)
Iy
Using (3) and (4), we reduce Eq. (2) to the form-
p' 21 1 ) /1 1 )
Pyo— Py =" |— — |+ 20— +—1. 5
v Pl 9 { & 2 k " s (5)

The pressure py; determines the superheating of the liquid and corresponds to the pressure of vapor generation
in the liquid flow.

The pressure pyy, corresponding to loss of stability in the liquid at rest, is calculated from the formula [4]

P L
Pyy= —p— &P ”‘7&—)

H

where pg, T, v, and vl are the pressure, temperature, and specific volumes of the saturated vapor and liquid; L
is the heat of vaporization; and R is the gas constant.

To determine ry, we write the differential equation of motion for the vapor core

1 d & (6)
o dr r’

Assuming an exponential law of radial density distribution
” ” r
o =psexp( — -+ )
r

where pfl is the density of the saturated vapor at the interface with the liquid, from (6) we have

o ? €x] ( 1— -2 ar
dp = 5 p p
Integration of this expression from r; to r| gives

o, I r r
Py — Po= 3 [2—(14—;) exp (1——1)] (7)

1 Ty 7o

As ry — 0 the limit of the subtrahend is equal to zero. Thus, finally, as p; — 0 from (7) we obtain
o5
rne=r l/ %. (8)
Pw

The existence of a vortex is possible if y=r;/r; < 1. Using (8) and assuming that r, = 2/2, we have

- of /% ©
A Py
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Substitution of (8) into (5) and certain transformations lead to the following expression for the vaporization
pressure and the corresponding superheating in the liquid flow:

qod=n) o oL+ / Py
Pre = Py [1 Ty p_—J -}"”_f—“ QBVJ (10)

In the first approximation, the parameters p', p8, ¢, and also py,; are determined at the initial temperature of the
liquid Tip.

In a turbulent flow, vortices of different sizes are possible and, in particular, vortices with scales A; and
A > g, whose circulation velocities are, respectively, wy and u = kw, where w is the flow-rate velocity of the pure
liquid at its initial density p'. Using the law of conservation of total moment of momentum in the form [5]

w? A2 = const, (11)

we establish a relation between the circulations of vortices of different scales. For the characteristic values of the
smallest-scale turbulence we obtain

d
ko~ ?gr , (12)
u
Wo Rei/ (13)
where Re = wd/v; d is the diameter of the channel flow cross section.
Substituting (12) and (13) in the form of an equality into (11), we have
nd .
A= Re0-8 : (14)
The circulation is given by
of = kwh. (15)

The coefficients k and n in (14) and (15) are always selected so that the best possible agreement with the
experimental data is obtained.

A comprehensive analysis of Egs. (9), (10), (14) and (15) shows that py; is a nonlinear function of w. Thus, the
vortex theory of vapor phase generation establishes an important theoretical relation between the superheating of the
liquid and the flow velocity.

There is certain velocity of the vortex flow at which the superheating becomes zero and adiabatic evaporation
impossible. We describe this velocity of the turbulent flow and the corresponding pressure drop as critical.

In the absence of vortices, for example, in the presence of laminar flow, I' = 0 and pV, = », i.e., if there are
no vortices in the liquid, then, in accordance with the theory, the generation of a vapor phase is impossible.

We have developed a semiempirical method of calculating the flow-rate density of nonequilibrium adiabatic flows
of evaporating liquids based on the application of the vortex theory of vapor-phase generation.

The essence of the method consists in the following. K the initial parameters of the liquid, the dimensions of the
flow cross section, and the empirical coefficients k and n are known, using the system of equations (14), (15), (9) and
(10) we establish a first analytic relation w = f(py,). The second analytic relation between w and py;, is obtained from
the system of equations of conservation of mass, momentum, and energy and from the expressions for the plase slip
€ and the true vapor content ¢. One control section is located in the pure liquid flow, the second in the section
determining the capacity of the vapor-generating element.

In practice, it is more convenient to employ a graphical construction. Assigning a series of values of w, from

the system of equations (14), (15), (9) and (10) we find a series of values of py; and construct the first graphical
relation w = f(pys). Assigning a series of values of py,, using the system of conservation equations we compute a
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series of values of the flow-rate velocity w and construct the second graphical relation w = f(py;) . The quantities
p', p", L and i' entering into the conservation equations are determined from thermodynamic tables at the pressure
py2. The point of intersection of the first and second graphical relations uniquely determines the velocity w and the
flow-rate density p'w. All the properties of real flows are reflected by the empirical coefficients k and n.

The empirical coefficients k and n are determined from experimental flow-rate characteristics, By successive
approximations we find the values of py;, at which the values of p', p", L and i' satisfy the conservation equations at
the experimentally known velocity w. Then the values of py, obtained are related with the same velocity w through
the coefficients k and n using the system of equations (14), (15), (9) and (10). The following empirical relation has
been established between the average values kyy and ngy:

— 2 —0.45
k,, = n2 Re 015,

The flow-rate characteristics for cylindrical channels carrying water calculated from the vortex theory are
presented in Fig. 1 [2]. The greatest discrepancy with experiment does not exceed 20%. The following average values
of the empirical coefficients were employed: 1/d = 1.6; kyy = 0.48, nyy = 16.3; 1/d = 5.2, kay = 0.837, ngy = 19.6;

1/d =100 kgyy =1.73, ngy = 26.8.
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Fig. 1. Flow-rate characteristics of
cylindrical channels for water (pjp =
=19.5 - 10° N/m?%; p'w, kg/cm? - sec):
1,2,3) accordingﬁto the vortex theory;
4) line of critical conterpressures; 5)
thermodynamic-equilibrium
homogeneous flow; 6) equilibrium
stratified flow; 7) hydraulic flow (1 —
— 1/d =1.6; 2—5.2; 4-100).

The characteristics for circular convergent nozzles and water [2] at kyy = 0.561 and nyy = 19.3, calculated from
the vortex theory, are presented in Fig. 2. In this case the maximum discrepancy does not exceed 3%.

In Fig. 3 the experimental [1, 6] characteristics for Laval nozzles and water are compared with those
calculated from the vortex theory using the following empirical coefficients: for pjp = 1.5 - 10° N/m? kgy = 0.384
Ngy = 17.45 iy = 3.5 - 10° N/m? kyy = 0.31, ngy = 17; pyp = 5.5 + 10° N/m? kyy = 0.271, ngy = 16.9; pjy = 7. 10° N/m?
kay = 0.294, ny. = 18.3 (pjy is the pressure of the water upstream from the nozzle). The calculations were made for
a pressure in the nozzle throat equal to py;. The error in the calculations based on the above values of kyy and nay
does not exceed 2% for selected experimental points.

In all cases, the phase slip and the true vapor content were determined from the formulas

ro\1/2
)"
P
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P = lwx(p")”z

The vortex theory also makes it possible to compute the critical velocity and critical pressure drops, at which
adiabatic vaporization in the flow becomes impossible.
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Fig, 2. Flow-rate characteristics of

circular convergent nozzles for water

(Pjp = 14.5 - 10° N/m?): 1) according to

the vortex theory; 2) thermodynamic~

equilibrium homogeneous flow; 3)

equilibrium stratified flow; 4) hydraulic
flow.

The order of calculation is as follows. First, the flow-rate characteristics are computed. Then, at each point
of the characteristic the differences (py; — p) are calculated and the graphical relations (py, — p) = f(Re) and
p = f(Re).constructed. The point of intersection of the first relation and the axis of abscissas, where py; = p,
determines the critical number Recyr and the critical velocity wey, at which there is no superheating in the liquid and
evaporation ceases. The second relation is used to determine the critical pressure pgy. At velocities less than wep
we get purely hydraulic flow and the flow-rate density changes abruptly.
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Fig. 3. Flow-rate characteristics for a
Laval nozzle and water (pin, N/m’):
1) according to the vortex theory;
2) thermodynamic-equilibrium
homogeneous flow; 3) hydraulic flow;

a) Xjp > 5% [1]; b) x4 < 2% [1,6].

The calculated values of the critical parameters have been plotted in Figs. 1-3,
For cylindrical channels and circular convergent nozzles, the value of pep corresponds to the counterpressure
in the outlet section p. For Laval nozzles pgy corresponds to the least initial pressure pj, of the liquid upstream

from the nozzle. We note that the critical velocities of water flows obtained from calculations based on the vortex
theory lie in the range 20—~30 m/sec, which is consistent with the experimental data of [3].
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NOTATION

p is the pressure; p is the density; v is the specific volume; T is the temperature; R is the gas constant;
L is the heat of vaporization; o is the surface tension; » is the kinematic viscosity; i is the enthalpy; r is the radius;
d is the diameter; A is the scale of turbulence; I is the length; f is the cross-sectional area; w is the velocity; u is the
circulation velocity; &€ = w"/w' is the phase slip; I' is the circulation; x is the mass vapor content; ¢ = f"/f is the true
vapor content. Subscripts: (') are liquid parameters; (") vapor parameters; (in) initial parameters; s is a saturation
parameter; V is a vapor-generation parameter; cr is a critical parameter; av is an average parameter.
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